

H₂O₂ acts as both oxidising as well as reducing agent. As oxidising agent, its product is H₂O, but 0.19 as reducing agent, its product is O₂. Volume strength has great significance for chemical reactions.

The strength of '10V' means 1 volume (or litre) of H_2O_2 on decomposition $(H_2O_2 \rightarrow H_2O + \frac{1}{2}O_2)$ gives 10 volumes (or litre) of oxygen at NTP.

15 gm $Ba(MnO_4)_2$ sample containing inert impurity is completely reacting with 100 ml of '11.2V' H_2O_2 , in acidic medium then what will be the % purity of $Ba(MnO_4)_2$ in the sample? (Atomic mass Ba = 137, Mn = 55) (A) 5% (B) 10% (C) 50% (D) none

- Q.20 At what temperature will R.M.S speed of the molecules of the second member of the homologous series $C_n H_{2n+2}$ be the same as that of oxygen at 527°C (A) 750°C (B) 477°C (C) 580.3°C (D) 1227°C
- The volume of two gases X and Y (having different molecular masses) are the same under identical Q.21 conditions of temperature and pressure. They would differ in
- Q.22

A)
$$qV$$
, $\frac{h}{\sqrt{2qVm}}$ (B) $\frac{h}{\sqrt{2qVm}}$, qV (C) qV , $\frac{h}{mV}$

Q.23

Q.24

The volume of two gases X and Y (naving different molecular masses) are the same under identical conditions of temperature and pressure. They would differ in (A) kinetic energy (B) number of molecules (C) rate of diffusion (D) critical temperature A particle initially at rest having charge q coulomb. & mass m kg is accelerated by a potential difference of V volts. What would be its K.E & de broglie wavelength respectively after acceleration (A)
$$qV$$
, $\frac{h}{\sqrt{2qVm}}$ (B) $\frac{h}{\sqrt{2qVm}}$, qV (C) qV , $\frac{h}{mV}$ (D) $\frac{h}{mV}$, qV Miss Ritika has two correct informations from Mr. Gupta and Mr. Agarwal about a particular orbital of hydrogen atom. Identify the orbital Mr. Gupta and Mr. Agarwal about a particular orbital of hydrogen atom. Identify the orbital Mr. Gupta and Mr. Agarwal about a particular orbital of hydrogen atom. Identify the orbital ($\frac{1}{4\pi}$) Mr. Agarwal: The orbital has two radial nodes. (A) 's' orbital with any principal quantum number 3 (C) 3s orbital (D) Mr. gupta & Mr. Agarwal are "naughty", together their information cannot predict the orbital. Which of the following do(es) not represent Δ H formation of the product. (I) $\frac{1}{2}$ H₂(g) + (aq) \longrightarrow H⁺(aq) (II) $\frac{2}{3}$ O₃(g) \longrightarrow O₂(g) (III) NH⁺₄(g) + Ch⁻(g) \longrightarrow NH⁴Cl(s) (IV) P₄(black) + 5O₂(g) \longrightarrow P₄O₁₀(s) (V) Reaction representing Δ H_{combustion} of C (graphite). (A) I, IV, V (B) II, IIV (C) II, III, IV (D) II, III, IV, V

(V) Reaction representing
$$\Delta H_{combustion}$$
 of C (graphite).
(A) I IV V (B) II IV (C) II III IV (D) II III IV V

Read the comprehension carefully & answer the questions (Q.25 & Q.26) that follow.

Analysis of distribution of molecular speeds of an ideal gas can be mathematically represented by the equation

$$\frac{\Delta N}{N} = 4\pi \left(\frac{M}{2\pi RT}\right)^{3/2} e^{-Mu^2/2RT} u^2 du$$

ΔN

where \overline{N} is fraction of molecule having speed between u to u + du M molecular mass, T is

absolute temperature.

The graph of 'fraction of molecules' vs 'speed' when plotted was found to be 'unsymmetrical' with very few molecules with very high or low speed & mostly molecules possessing speeds in the range of 270-330 m/s.

The plotting of the graph & the variation of fraction of molecules with mass of the gas & temperature of the gas can be compared by identifying the 'influencing' terms. At higher speeds the nature of graph is influenced by the exponential term $\left[e^{-\frac{Mu^2}{2RT}}\right]$ & at lower speed it is influenced by the o

parabolic term (M/(2πRT))^{3/2} u². Using the above expression values of U_{mps}, U_{avg} and U_{rms} can also be established.
Mark the correct statement
(A) Number of molecules having speed around 300 m/s will be greater than number of molecules having speed around 300 m/s will be greater than number of molecules possessed by most of the molecules & average speed has the same value.
(C) At lower speed the fraction of the molecules decrease with increasing speed.
(D) At higher speed the fraction of molecules increases with increasing speed.
(A) At same temperature average speed of O₂ is greater than that of SO₂.
(B) If absolute temperature of O₂ is half to that of SO₂ gas than the speed distribution curves will be different.
(C) At same temperature & at lower speed, fraction of molecules of SO₂ will be greater.
(D) At same temperature & at higher speed, fraction of molecules of O₂ will be greater.
(D) At same temperature & at higher speed, fraction of molecules of O₂ will be greater.
(D) At same temperature & at higher speed, fraction of molecules of SO₂ will be greater.
(D) At same temperature & at higher speed, fraction of molecules of O₂ will be greater.
(D) At same temperature & at higher speed, fraction of molecules of O₂ will be greater.
(D) At same temperature & at higher speed, fraction of molecules of O₂ will be greater.
(D) At same temperature & at higher speed, fraction of molecules of O₂ will be greater.
(D) At same temperature & at higher speed, fraction of molecules of O₂ will be greater.
(D) At same temperature & at higher speed, fraction of molecules of O₂ will be greater.
(D) At same temperature & at higher speed, fraction of molecules of O₂ will be greater.
(D) At same temperature & at higher speed, fraction of molecules of O₂ will be greater.
(D) At same temperature average speed of O

FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

Q.25

Q.26

Q.27

to Br^- and BrO_3^- . The resulting solution is freed from Br^- , by extraction and excess of $OH^$ neutralised by acidifing the solution. The resulting solution is sufficient to react with 1.5 gm of impure CaC_2O_4 (M =128 gm/mol) sample. The % purity of Oxalate sample is

 Br_2 (aq.) + OH⁻ \longrightarrow Br^- (aq.) + BrO_3^- The relevant reactions are

$$BrO_{3}^{-} + C_{2}O_{4}^{2-} \longrightarrow Br^{-} + CO_{2}$$
(B) 12.5% (C) 90%

(D) 50%

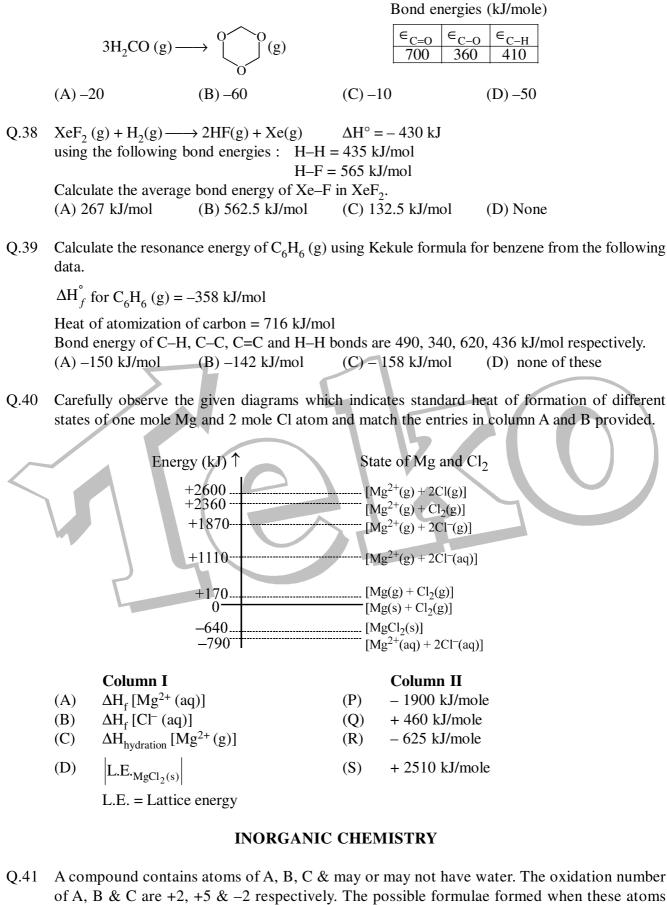
25 20

15

10

Ŕ 10

P/(104Pa


(A) 85.3%

From the given graph of $\frac{P}{d}$ Vs. P for gas at constant temp. 300 K, Q.28 $\frac{P}{d}/(10^4 m^2 s^{-2})$ the molecular weight of gas can be concluded to be (gm/mole) (A) ~50 (B) ~25 (C) ~75 (D)~100

Q.29 The number of revolution $(n_r/10^{15} \text{Hz})$ an electron make in 3rd Bohr orbit of H atom is

Given
$$E_n = \frac{Z^2}{n^2} (21.8 \times 10^{-19} J/atom)$$

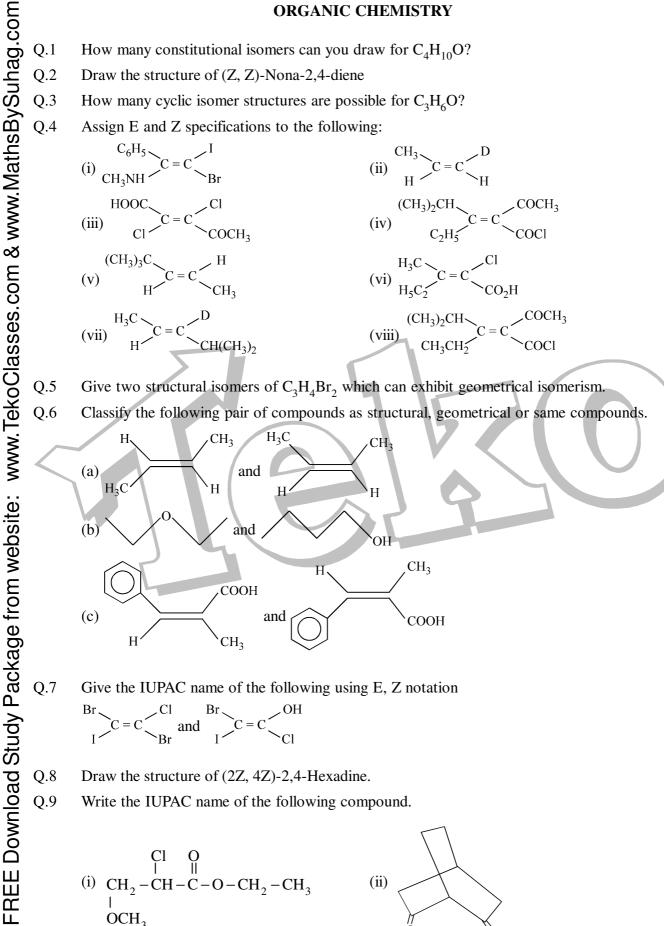
 $h = 6.625 \times 10^{-34} J/sec.$
(A) $\frac{21.8 \times 6.625}{3 \times 2}$ (B) $\frac{21.8}{6.625} \times \frac{2}{3}$ (C) $\frac{21.8}{6.625} \times \frac{3}{2}$ (D) $\frac{6.625}{21.8} \times \frac{3}{2}$
Q.30 What volume of air at STP contaning 21% of oxygen by volume is required to completely burn subplur (S_k) present in 100 g of sample, which contains 4% inert material which does not burn. Subplur burns according to the reaction
 $\frac{1}{8} S_b (s) + O_2(g) \longrightarrow SO_2(g)$
(A) 67.2 Litre (B) 320 Litre (C) 0.3125 Litre (D) None
Q.31 The distance between 3rd & 2nd Bohr orbit of He⁴ is
(A) 2.645 × 10⁻¹⁰m (B) 1.322 × 10⁻¹⁰m (C) 0.2645 × 10⁻⁸m (D) None
Q.32 For a real gas (mol. mass = 30) if density at critical point is 0.40 g/cm³ and is $T_c = \frac{2 \times 10^5}{821}$ K, then
Vander Waal's constant a (in atm L²mol⁻²) is
(A) 5.695 (B) 1.6875 (C) 0.1687 (D) None
Q.33 For a closed (not rigid) container containing n = 10 moles of an ideal gas, fitted with movable, atm, which graph represents correct variation of log V to log T where V is in lit. & T in Kelvin.
 $(A) \frac{g}{(A)} = \frac{g}{$

Q.37 The enthalpy of gas phase trimerization of one mole of gaseous fermaldehyde in (kJ/mole)

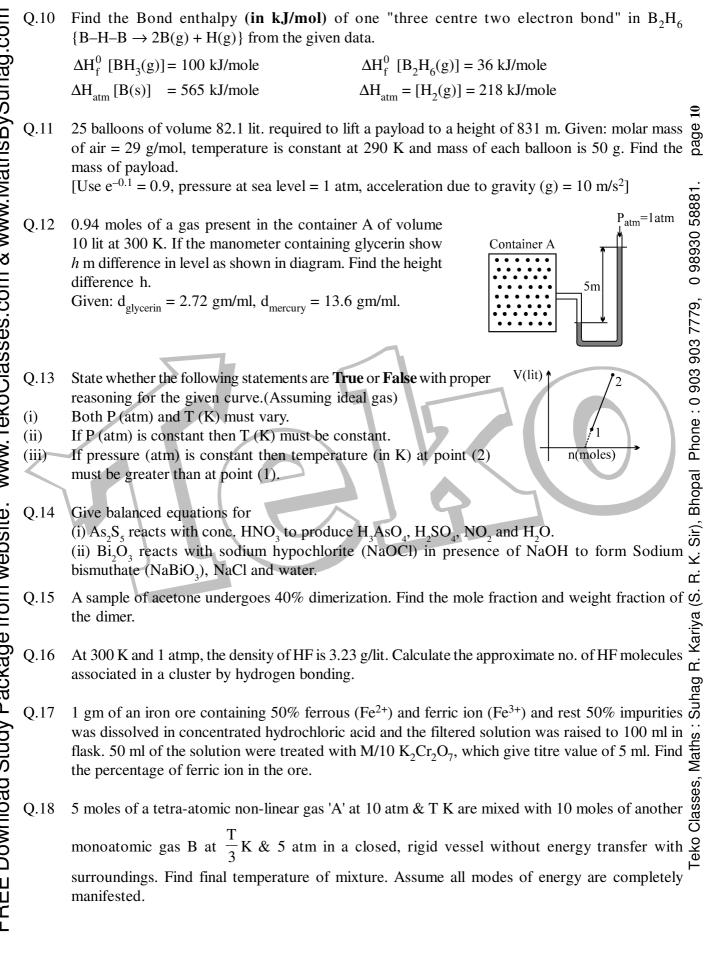
1 page

Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881.

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.


(B) $A_3(B_4C)_2$ (C) $A_2(BC_7)_2$

combine is/are:


(A) $A_{3}(BC_{4})_{2}$

	Get S 0.42	olution of These Pa The geometry of az	•	arn by N	/ideo Tutorials on w	ww.MathsBySuhag.com		
F	Q.+2	(A) linear	(B) Tetrahedi	ral	(C) Triangular plana	ar(D) Square pyramidal		
www. lekoClasses.com & www.MathsbySuhag.com	Periodic Table) and select the							
naç		correct answer using Column I I. 52	,	P.	Column II s-block			
N N N		II. 56		Q.	p-block		×	
ñ		III. 57 IV. 60		R. S.	d-block <i>f</i> -block		page	
athe		(A) I – P, II – Q, III –			(B) I – Q, II – P, III –		<u>o</u>	
ĭ ĭ		(C) I - P, II - Q, III - R, IV - S $(D) I - Q, II - P, III - R, IV - S$						
\mathbf{i}	Q.44	Which of the following set of species have planar structures					98930 58881	
× ×		(A) I_3^- , CH_3^- , CIO_3^-	$\frac{1}{6}$, SiF ₆ ²⁻		(B) I_3^+ , ICl_4^- , Al_2Cl_6		8930	
Ē		(C) SCl_2 , N_2O_5 , SF_4	, XeOF ₄		(D) I_2Cl_6 , XeF ₂ , BrF ₂	F_{4}^{-}, XeF_{5}^{-}	6 0	
8	Q.45	Select pair of comp	tion but have same molecular	7779,				
ses		geometry.				903 77		
ase	(A) BF_3 , BrF_3 (B) ICl_2^{\Box} , $BeCl_2$ (C) BCl_3 , PCl_3 (D) PCl_3 , NCl_3 Q.46 Select equations having Exothermic step:							
S S								
<u>e</u>		$(I) S^{-}(g) \longrightarrow S^{2-}(g)$ $(III) N(g) \longrightarrow N = (I)$		-	(II) $Na^+(g) + Cl^-(g)$		Phone:0	
Š		$(III) N(g) \longrightarrow N^{-}(g) (V) P (red) \longrightarrow P (R)$			$(IV) Al^{2+}(g) \longrightarrow Al^{2}$	(g)		
\leq	\leq	Choose the correct c	ode (B) I, II & V		(C) III, IV & V	(D) II & III	opal	
site:		(A) II & V	(D) I, II & V		(C) III , IV & V	(D) II & III	Sir), Bhopal	
OSI	Q.47	$\mathbf{N}(\mathbf{C};\mathbf{U})$. $\mathbf{M}_{\mathbf{C}}$ $\mathbf{N}_{\mathbf{C}}$. (C:U) D						
We		(A) planar, pyramida	5		(B) planar, pyramida	l, pyramidal	Ч	
E		(C) pyramidal, pyramid	midal, pyramida	1	(D) pyramidal, plana	r, pyramidal	S.	
	Q.48	A compound contain	number of $A = +2$, $B = +5$ and	ariya				
age		C = -2, the possible		-		$(D) ABC_{2}$	ц. К.	
Š		$(A) A_3(B_4C)_2$	$(B) A_3 (BC_4)_2$		$(\mathbf{C})\mathbf{A}_2(\mathbf{B}\mathbf{C}_3)_2$	(D) ABC_2	l ger	
ĩ	Q.49	The ratio of σ -bond	and π -bond in terms (B) 1 : 1	etracyan	o ethylene is (C) 1 : 2	(D) None	: Suł	
nay		(A) 2 : 1	(D) I . I		(C) 1 . 2	(D) None	aths	
אַ גי	Q.50	A compound contains three elements A, B and C, if the oxidation number of $A = +2$, $B = +5$ and $C = -2$, the possible formula of the compound is (A) $A_3(B_4C)_2$ (B) $A_3(BC_4)_2$ (C) $A_2(BC_3)_2$ (D) ABC_2 The ratio of σ -bond and π -bond in tetracyano ethylene is (A) 2 : 1 (B) 1 : 1 (C) 1 : 2 (D) None "Solubility of Alkali metal fluorides increases down the group" Select correct explanation for given statement. (A) Hydration energy increases and lattice energy decreases down the group (B) Both energy decrease down the group but decrease in hydration energy is rapid (C) Both energy decrease down the group but decrease in lattice energy is rapid (D) Both energy increase down the group but increase in hydration energy is rapid						
oac		•	y increases and 1	lattice e	nergy decreases down	the group	isse	
Ň		on energy is rapid	o Clê					
OPDOTOTION N(SiH_3)_3 ; Me_3N ; (SiH_3)_3P(A) planar, pyramidal, planar(B) planar, pyramidal, pyramidal(C) pyramidal, pyramidal, pyramidal(D) pyramidal, planar, pyramidalQ.48A compound contains three elements A, B and C, if the oxidation number of A = +2, B $C = -2$, the possible formula of the compound is(A) $A_3(B_4C)_2$ (B) $A_3(BC_4)_2$ (C) $A_2(BC_3)_2$ (D) ABC_2 Q.49The ratio of σ-bond and π-bond in tetracyano ethylene is(A) $2:1$ (B) $1:1$ (C) $1:2$ (D) NoneQ.50"Solubility of Alkali metal fluorides increases down the group" Select correct explangiven statement.(A) Hydration energy increases and lattice energy decreases down the group(B) Both energy decrease down the group but decrease in hydration energy is rapid(D) Both energy increase down the group but decrease in hydration energy is rapid							Tekc	

ORGANIC CHEMISTRY

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com PHYSICAL CHEMISTRY

	olution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com	
Q.19	The lattice energy of $\text{CaBr}_2 = -2162 \text{ kJ/mole}$	
	Heat of formation of $\text{CaBr}_2 = -675 \text{ kJ/mole}$	
	IE_1 and IE_2 of Ca are 590 kJ/mole and 1145 kJ/mole respectively	
	Heat of sublimation of $Ca = 178 \text{ kJ/mole}$	
	Bond Energy of $Br_2 = 193 \text{ kJ/mole}$	
	Heat of vapourization of liquid $Br_2 = 31$ kJ/mole Calculate electron affinity of bromine, write equations to represent all these changes indicating	
	corresponding energies properly.	Ξ
0.00	0.10 g of a sample containing $CuCO_3$ and some inert impurity was dissolved in dilute sulphuric	e
Q.20	0.10 g of a sample containing CuCO ₃ and some inert impurity was dissolved in dilute sulphuric acid and volume made up to 50 ml. This solution was added into 50 ml of 0.04 M KI solution	paç
	where copper precipitates as CuI and I ⁻ is oxidized into I_3^- . A 10 ml portion of this solution is	381.
	taken for analysis, filtered & made up free I_3^- and then treated with excess of acidic permangagnate) 585 1
	solution. Liberated iodine required 20 ml of 2.5 mM sodium thiosulphate solution to reach the	93(03(
	solution. Liberated iodine required 20 ml of 2.5 mM sodium thiosulphate solution to reach the end point. Determine weight percentage of $CuCO_3$ in the original sample.	8 0
		0
Q.21	(1.4	ດົ
	Ammonia gas evolved was passed through 50 mL of 1N H_2SO_4 . After the reaction was over,	
	(i) The percentage of ammonia in the sample. (ii) The value of x in the formula.	903
		903
Q.22	A 2.50g sample containing As ₂ O ₅ and Na ₂ HAsO ₃ , and inert material is dissolved and the pH is	ი ი
C		
	11.3 mL to just reach the end point. Then, the solution (all the arsenic in the +5 state now) is	ne
	acidified with HCl, excess KI is added, and the liberated I, is titrated with 0.120 M $Na_2S_2O_3$, is	Phone
1		
	requiring 41.2 mL. Calculate the per cent As_2O_5 and $Na_2^{TTASO_3}$ in the sample.	bg
0.22	Deducing suggestions are connecting a characterized by a sumbar D subject is defined as the number of	Sir), Bhopal
Q.23	Reducing sugars are sometimes characterized by a number R_{cu} , which is defined as the number of f	Т
	mg of copper reduced by 1 gm of sugar, in which half reaction for the copper is	S.
	$Cu^{2+} + OH^- \longrightarrow Cu_2O + H_2O$	Ч.
	It is sometimes a subminute determine the network spectrum of a contrabutation in direct	ц.
	It is sometimes more convenient to determine the reducing power of a carbohydrate by an indirect $f(X, (D))$	S.
	method. In this method 43.2 mg of the carbohydrate was oxidized by an excess of $K_3(Fe(CN)_6)$.	۲a
	The Fe(CN) ₆ ⁴ formed in this reaction required 5.29 ml of 0.0345 N Ce(SO ₄) ₂ for reoxidation to $-$	Kariya
	$Fe(CN)_6^3$. Determine the R_{Cu} value for the sample.	×
		~

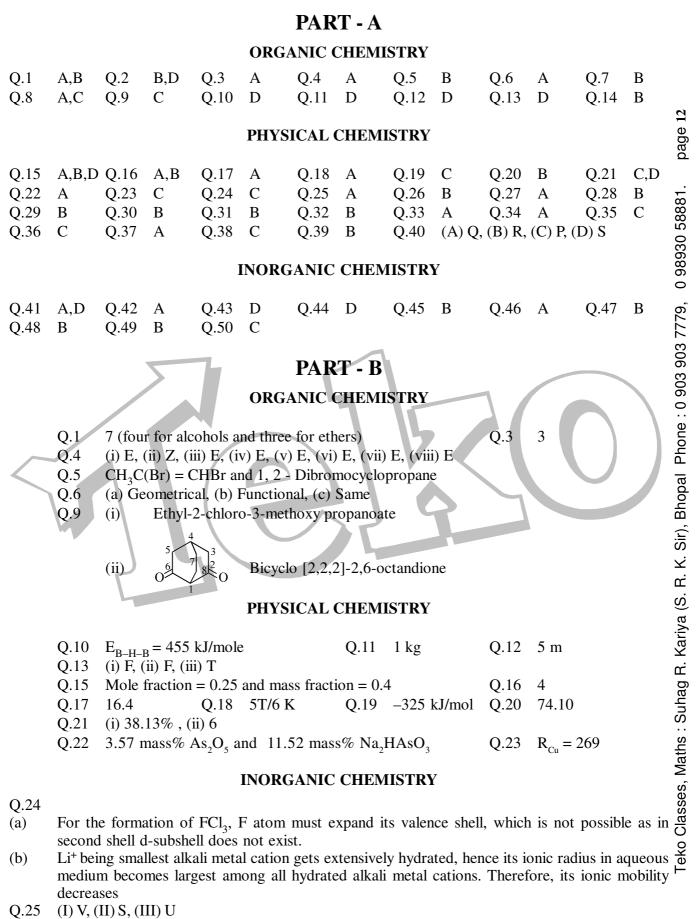
INORGANIC CHEMISTRY

Q.24 Explain the following

(a) Why ClF₃ exists whereas FCl₃ does not?

(b) Li⁺ ion is far smaller than the other alkali metal ions, but moves through solution less rapidly than the other alkali metal ions under the influence of electric current.

Q.25	Elements	IE ₁	IE,			
	S	2372 kJ/mole	5251 kJ/mole			
	Т	520 kJ/mole	7300 kJ/mole			
	U	900 kJ/mole	1760 kJ/mole			
	V	1680 kJ/mole	3380 kJ/mole			
	Which of the above elements is					
	(I) a reactive non	i-metal				
	(Π) = $\pi + 1 + 1 + \dots + \pi$					


(II)a noble gas

a metal that forms a stable binary halide of the formula AX_2 (X = halogen) (III)

page 12

0 98930 58881.

(I) V, (II) S, (III) U

FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com